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l.Ø INTRODUCTION 
 
1.1 If asked "What is the weather like outside?", most people 
might respond "Cloudy, warm, and some what breezy.". In the same 
situation, a weather observer would reply "2Ø SCT M9Ø OVC 6K 
l73/75/68/3ØlØ/ØØ4". Despite the (contrived) fact that both 
messages contain about the same number of characters, the 
observer's reply obviously includes much more specific and 
detailed information. His senses were augmented by a number of 
sensors which must have included a ceilometer, barometer, 
thermometer, hygrometer, anemometer, and wind vane in this 
example. Furthermore, he had been carefully trained to observe 
visibility and identify obstructions to visibility, to use tables 
to compute sea level pressure and altimeter setting, and to code 
and format a message properly. While not explicit, he had also 
exercised considerable judgement in controlling the quality of 
data in the message. For example, in this message temperature 
exceeds dewpoint, wind direction lies in the range of ØØ to 36, 
sea level and altimeter setting pressures are compatible, and no 
sensors were recognized as defective which would have resulted in 
missing message elements. 
 
1.2 This observer is not unique. Thousands of them throughout the 
world routinely produce frequent observations in a standard format 
for exchanging high quality information obtained by uniform 
observing techniques. To accomplish this, very considerable 
resources have been devoted over very many years to standardize 
content, quality, and format. As we move toward automated 
observation of the atmosphere, we are faced with the need to 
preserve much of what has already been standardized and to devise 
means of accomplishing the functions of the human observer with 
modern data processing equipment. 
 
1.3 Not surprisingly, much of the existing technology and 
standardized manual techniques can be utilized by automatic 
weather stations. These include many sensors, standard 
computations for deriving elements of the message, and the message 
format itself. That is not to say the adaptation for automation is 
always trivial. Not all sensors interface easily with automated 
equipment. Analytic expressions for computations presently 
embodied in tables must be recovered or discovered. The rules for 
coding messages must be expressed in computer languages with 
degrees of precision, completeness, and unambiguousness not 
demanded by natural language instructions prepared for human 
observers. 
 
1.4 On the other hand, automation creates the need to quantify 
functions performed by humans for which no standards have been 
established. Among these are data quality control and the 
extraction of statistics. It is easy enough to teil the observer 
to report an average temperature and daily maximum and minimum, 
but much more detail and precision is needed to instruct a 
computer to accomplish the same. Further more, some human 
functions cannot be automated using either current or foreseeable 
technologies. The observation of cloud types is an obvious 
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example. 
 
1.5 The same functions executed in the current mix of sensors, 
humans, and communications equipment should also be found in 
automatic weather stations. These functions are: 

- transducing atmospheric variables 
- conditioning transducer outputs 
- converting or displaying transducer outputs 
- linearizing transducer outputs 
- controlling data quality 
- extracting statistics, such as the average, from data 
- deriving related variables 
- formatting the message 
- checking the contents of the message 
- transmitting the message 

 
1.6 The order in which these functions are arranged is only 
approximately sequential. Certainly the first listed above must 
always be first and the last, last. While linearization may 
immediately follow or be inherent in the transducer, it should not 
follow the extraction of an average value. Also, either the 
conventional mix of men and machines or a fully automated station 
can operate in a diminished capacity without incorporating some of 
these functions. For example, either one could operate without 
data quality control and a check of message content, but only by 
jeopardizing credibility. 
 
1.7 Recognize that in both the conventional and automatic weather 
station, these functions may be distributed. Sensors such as a 
laser ceilometer may incorporate all the functions listed above 
for presentation to an observer or ingestion by another processor. 
Alternatively, raw transducer outputs from the full sensor 
complement of a station may feed directly into a single processor 
embracing all the remaining functions. 
 
1.8 The following sections elaborate on some of the functions 
listed above. Message formatting and transmission are not 
discussed at all. only those features of transducers, signal 
conditioning, linearization, and conversion which impact upon the 
principal topics are introduced. The focus is upon data quality 
control, extraction of statistics, and derivation of related 
quantities. Data quality control incorporates checking the 
contents of the message. 
 
1.9 Before proceeding further, the reader should clearly 
understand the viewpoint from which this document was written. In 
processing meteorological data, there is usually a correct 
procedure, algorithm, or approach and an infinity of 
approximations ranging in validity from extremely good to useless. 
The correct approach is greatly preferable for a number of 
reasons: 
 

- Considering the current electronic technology and prices and 
the steady trend toward greater performance at lower costs, 
it is difficult to justify choosing an approximation if the 
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correct approach is known. When the complement of sensors for 
a very modest automatic weather station costs at least 
$1ØØØØ, its housings and shelters and communications 
equipment a comparable amount, and its installation that 
amount again, the expenditure of a few hundred dollars to 
double the processing capability seems reasonable. 

 
- Considerable experience strongly suggests that the correct 

approach is usually the most efficient in the long term. It 
is direct, requires a minimum of qualifications, and once 
implemented correctly needs no further attention.  

 
- Good approximations are accompanied by sound estimates of 

their range and conditions of validity.  It takes 
considerable skill and experience and effort to derive these 
estimates.  

 
Accordingly, the subsequent presentations are largely limited to a 
single, correct approach to the problem under consideration. 
However, exact solutions do not exist for all problems addressed 
in the automation of surface observations. Approximations and 
conditions for their validity are presented when necessary or 
illustrative. 
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2.Ø TRANSDUCERS, SIGNAL CONDITIONING, AND CONVERSION 
 
2.1 Everyone recognizes the necessary role of a transducer to 
sense an atmospheric variable and to convert it quantitatively 
into a useful and convenient (usually electric) signal. Most users 
realize that transducers may have secondary responses to the 
environment, such as temperature dependent calibrations, and their 
outputs are subject to a variety of errors, such as drift, noise, 
etc. However, it is not widely appreciated that atmospheric 
variables fluctuate rapidly and randomly because of ever-present 
turbulence and that transducer outputs are not faithful 
reproductions of atmospheric variables because of imperfect 
dynamic characteristics such as the limited capability of 
transducers to respond to rapid changes. 
 
2.2 Almost all transducers follow very slow or low frequency 
changes in the atmosphere but respond with diminished sensitivity 
to more rapid or higher frequency fluctuations. It is impractical 
to describe all types of sensor response in this document since 
the variety is 50 large. For example, adopting the common (and 
oversimplified) definition of time constant as the time interval 
required to show 63 percent of a step-function change, cup and 
propellor anemometer time "constants" vary inversely with wind 
speed, hygrometer time "constants" depend on temperature and 
humidity in very complex and poorly understood ways, and 
underdamped wind vanes oscillate at a frequency proportional to 
wind speed with the oscillations decaying in time inversely 
proportional to wind speed. 
 
2.3 Transducers generally require conditioning to amplify their 
outputs and/or convert from one output form to another; e.g. from 
resistance to voltage. The circuitry used to accomplish this may 
also smooth or low-pass filter the signal. 1f the transducer 
output requires linearization this function may be incorporated in 
the signal conditioning circuitry and may in turn introduce 
further filtering. 
 
2.4 A rigorous understanding of the difference between an 
atmospheric variable and a signal representing it requires complex 
and sophisticated analysis beyond the scope of this document. To 
satisfy its purposes, the recognition and qualitative 
understanding of two characteristics of transducers and signal 
conditioning circuitry will suffice. First, smoothing or low-pass 
filtering of a nonlinear and non-constant quantity will introduce 
errors into averages of that quantity. Second, signals are 
bandwidth limited. In other words, there is a cutoff frequency 
above which no significant signal fluctuations occur because none 
exist in the atmosphere and/or the transducer or signal 
conditioning circuitry has removed them. 
 
2.5 The next section discusses the importance of linearization 
before averaging or executing operations similar to averaging such 
as low-pass filtering and smoothing. 1f ignored, significant 
systematic errors may be introduced into averages. Non-linear and 
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concurrently slow-responding sensors introduce these errors. The 
rotating cup anemometer is a well-documented example. The problem 
cannot be avoided entirely, but its consequences can be minimized. 
While the use of sensors which respond more rapidly than the 
atmosphere fluctuates is the correct solution, such sensors with 
the additionally required properties of high reliability, 
ruggedness, acceptable cost, etc. are usually not available. As a 
practical matter for synoptic observations, any sensor responding 
to atmospheric wavelengths of a few meters or less is adequate. In 
instrumental terms, this criteria corresponds to distance 
constants of 3 or 4 meters or time constants of 3 or 4 seconds at 
wind speeds of 1 meter per second and Ø.3 or Ø.4 seconds at 1Ø 
meters per second. If this cannot be satisfied, very careful and 
often extensive analysis may reveal a correct choice of transducer 
and associated circuitry. For example, the long thermal time 
constants of some thermometers introduce no error into averages of 
their outputs.  

 
2.6 To process signals digitally, an analog-to-digital converter 
(ADC) is needed to interface analog and digital devices. The 
question arises of how often an ADC input channel should be 
sampled. The unqualifiedly correct answer is at a rate at least 
twice the cutoff frequency of the input signal. A simpler and 
equivalent rule of thumb usually suffices: the sample interval 
should not exceed the largest among the time constants of all 
devices and circuitry preceding the ADC in the channel under 
consideration. 1f the ADC sample rate is smaller than twice the 
cutoff frequency, unnecessary increases in the variance of the 
digitized data and all derived quantities and statistics occur. 
While these increases may be acceptable in particular cases, in 
others they may not. Proper sampling always ensures minimum 
variance 
 
2.7 It seems worthwhile to point out that good design may call 
for incorporating a low-pass filter with a time constant about 
equal to the sampling rate immediately ahead of the ADC. It is a 
precautionary measure to minimize effects of noise, especially 5Ø 
or 6Ø Hz power main pickup by cables connecting sensors to 
processors and leakage through power supplies. 
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3.Ø LINEARIZATION 
 
3.1 Because the sequence of operations "average then linearize" 
produces different results than "linearize then average" when the 
signal is not constant throughout the averaging period, it is 
necessary to average linear data. One deals with three sources of 
nonlinearity. First, many transducers are inherently nonlinear; 
i.e. their output is not directly proportional (within an additive 
constant) to the measured atmospheric variable. A thermistor is 
a simple example. Second, although a sensor may incorporate linear 
transducers, the variables measured are not linearly related to 
the atmospheric variable of interest. For example, the 
photodetector and shaft angle transducer of a rotating beam 
ceilometer are linear devices, the ceilometer output signal 
(backscattered light intensity as a function of angle) is 
nonlinear in cloud height. Third, care must be taken in choosing 
the atmospheric variable to average. As will be shown below, 
extinction coefficient, not visibility nor transmittance, is the 
proper variable to average to produce estimates of average 
visibility!  
 
3.2 The next table lists several elements of a synoptic 
observation which are reported as averages and the corresponding 
linear atmospheric variables. 
 
Element of Observation Linear Variable (typical units) 
 
station pressure pressure (millibars, hectopascals)  
air temperature temperature (degrees Celcius)  
dewpoint temperature absolute humidity (kg water vapor/cubic 

  meter)  
wind speed and direction  Cartesian components (meters/second)  
cloud base height height (meter)  

visibility extinction coefficient (meter-1)  
 

The remainder of this section discusses averaging to obtain 
reportable values for visibility, wind speed and direction, and 
dewpoint temperature. In the discussion, upper case letters denote 
averaged quantities and lower case letters, "instantaneous" 
variables.  

 
3.3 Visibility 
 
3.3.1 Since visibility depends upon the human observer and the 
targets and their backgrounds used as well as properties of the 
atmosphere, a sensor cannot measure visibility. Instead, sensors 
measure extinction coefficient or some uniquely related quantity 
such as transmissivity. One then uses various formulae to compute 
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an estimated visibility, called instrumental visibility. The 
question at hand is should one average instrumental visibilities 
or average extinction coefficient and then compute an average 
instrumental visibility. The following example clearly indicates 
that the latter is correct.  
 
 
3.3.2  Consider the visibility field shown in Figure 3.1. The 
banded structure is assumed to extend over a very large area. The 
width of the bands are not critical, but it is convenient to 
visualize them as equal and less than a few hundred meters. Assume 
that instrumental visibility v and extinction coefficient CE are 
related by: 
 
(3.1) cE = 3.Ø/v 

 
Over an interval of time long compared to the period of the 
visibility pattern passing the sensor or over a distance large 
compared to the wavelength of the visibility pattern shown in the 
figure, the average of instrumental visibilities VX is: 

 
(3.2) VX = (1ØØ + 1ØØØØ)/2 = 5Ø5Ø meters 

 
while the average instrumental visibility V is: 
 
(3.3) V= 3.Ø/CE = 3.Ø/[(Ø.Ø3 + Ø.ØØØ3)/2 =198 meters 

 
where CE = average extinction coefficient 

 
It should be obvious that 198 meters is a much more realistic 
estimate than 5 kilometers. By using similar arguments, one can 
show that transmissivity is nonlinear as well. 
 
3.4 Wind 

 
3.4.1 The conventional approach to obtaining wind speed and 
direction averages for coding an observation consists of measuring 
and averaging wind speed and direction. An obvious problem arises 
with computing the direction average because the discontinuity 
between 359 and Ø degrees is a severe nonlinearity. Engineers have 
devoted a surprising amount of effort and ingenuity to solving 
this problem in automatic weather stations. An additional and more 
subtle difficulty exists which the following analysis will reveal.
 



 3-2a 

 
 
 

 
 
 
FIGURE 3.1 
 
Visibility field alternating between 100 meters and 10 kilometers 
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3.4.2 Let u and v represent the Cartesian wind components. The 
wind speed s is then: 
 

(3.4)  s=(u2+v2)Ø.5 
 
Writing u=U+u' (sum of average U and fluctuation about the average 
u') and v=V+v', expanding the square root term in a binomial 
series, and taking the average of the resulting terms, the average 
wind speed S becomes:  

 

(3.5) S=(U2+V2).5[1+.5(V2/(U2+V2)){du2}+.5(U2/(U2+V2)){dv2}+…] 

 where du = u’/(U2+V2)Ø.5 

  dv = v’/(U2+V2)Ø.5 

  { } = average (alternative notation) 
 
Equation (3.5) expresses the unsatisfactory situation that the 
average wind speed depends upon the turbulent intensities du and 

dv. The problem arises because the definition of wind speed in is 

nonlinear. It is resolved by redefining the average wind speed S 
as: 
 

(3.6) S = (U2+V2)Ø.5 

 
3.5 Dewpoint Temperature 
 
3.5.1 To show that absolute humidity is the correct humidity 
variable to average, consider a cylinder of moist air of fixed 
cross-section and length. For simplicity, assume the cylinder to 
be subdivided into N subvolumes and that the temperature, 
pressure, and humidity are constant in each, but may vary from one 
to the next. It is reasonable to require that the average 
humidity, namely the sum of N humidities divided by N, be 
identical to the humidity obtained if the moist air from all 
subvolumes  were thoroughly mixed. Absolute humidity satisfies 
this requirement. 
 
3.5.2 How non-linear are other measures of humidity? To answer 
this question, a considerable amount of analysis and knowledge of 
the properties of the atmosphere is needed. Vapor pressure is the 
easiest case to examine. 
 
3.5.3 For the purposes of this analysis, assume that water vapor 
behaves as an ideal gas in air. Then the vapor pressure e is 
related to the absolute humidity d and temperature t by: 
 
(3.7) e = Rwdt, where Rw=gas constant for water vapor 
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Denoting the averages of e, d, and t as E, D, and T respectively 
and the instantaneous departures of d and t from their average 
values as d' and t' respectively; equation (3.7) may be rewritten 
as: 
 
(3.8) e = Rw (D+d') (T+t') 

 
   = Rw (DT+Dt' +Td' +d't')  

 
Taking the average of both sides of (3.8), using an alternative 
notation {x}=X for an average, and noting that the average of 
fluctuations about the mean is zero by definition: 
 
(3.9) E = RwDT + Rw{d't'} 

 
or 
 
(3.1Ø) E=RwDT[1+{(d'/D)(t'/T)}]. 

 
The departure from linearity is given by: 
 
(3.11) (E-RwDT)/RwDT = {(d'/D)(t'/T)} 

 
The right side of (3.11) is a normalized cross-correlation between 
humidity and temperature fluctuations. (d'/D) is unlikely to 
exceed Ø.1 in the rootmean-square sense and (t'/T), Ø.Ø1. Thus, 
the departure of water vapor pressure from non-linearity is most 
unlikely to exceed Ø.1 percent, far less than the best attainable 
sensor accuracies.  

 
3.5.4 In the analyses of wind speed and water vapor pressure 
nonlinearities, terms involving statistics of turbulent 
fluctuations of atmospheric variables have occurred. Estimating 
their magnitude, or limits 0fl their magnitude, accurately will 
always be difficult. At times, such as in the discussion following 
equation (3.11), it is easy to see that the term is negligibly 
small. At other times, such as in equation (3.5), the decision is 
not dear. 
 
3.6 Choosing the Linear Variable 
 
3.6.1 Since averaging nonlinear variables creates difficulty only 
when the variable changes during the averaging period, the easiest 
way to distinguish between linear and nonlinear variables is to 
examine the consequences of very, even unrealistically, large 
changes during the averaging period or over a spacial averaging 



 

 3-5 

interval or area. This is precisely what was done to demonstrate 
that extinction coefficient, not instrumental visibility, should 
be averaged. The same thing easily could have been done for wind 
speed and direction and for dewpoint temperature. However, the 
purpose of the more detailed analyses of these two cases was to 
show that realistic analyses require the expenditure of a 
considerable effort and a knowledge of the statistical properties 
of turbulent fluctuations of atmospheric variables. Not only is 
the requisite knowledge often missing, but even if present one 
must recognize that the atmosphere has a propensity to exceed our 
estimates of its behavior. Always averaging linear variables is a 
far more secure approach. 
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4.Ø DATA QUALITY CONTROL 
 
4.1 To ensure high quality observations, it is not sufficient to 
design, test, and correct deficiencies in an automatic weather 
station prototype before acquiring, installing, and operating a 
network. During operation, performance deteriorates because of the 
ageing of components, exposure to untested circumstances, degraded 
maintenance, and the too frequent failure of production equipment 
to attain prototype performance levels. One needs the means to 
monitor the quality of observations continuously during operation. 
 
4.2 The following controls can be implemented systematically: 
 

- Careful prototype design, testing, and correction of 
deficiencies. 

- Thorough and diligent production testing. 
- Use of redundant sensors in automatic weather stations, 
keeping in mind that identical sensors are likely to have 
similar drifts and biases. 

- Incorporating sensor status output signals, in addition to 
the principal output(s) representing the atmospheric 
variable, in sensor designs. Sensors often include components 
other than transducers whose failure seriously degrades or 
renders useless the principal output. Power supplies, fans, 
sources of radiant energy, etc. are common examples. 

- Identification and labelling of erroneous data prior to 
further processing. Intra-sensor data editing refers this 
process applied to the data of a single sensor. Inter-sensor 
data editing refers to this process applied to data from two 
or more sensors. 

- Processing of edited data to exclude or otherwise properly 
handle data labelled as erroneous. Intra-sensor data quality 
control incorporates both this process and editing applied to 
data from a single sensor. Inter-sensor data quality control 
is the analagous termininology for two or more sensors. 

- Inclusion of processor self-check features. 
- Examination, at a central location, of observations from a 
network of stations to detect sensor drift and bias. 

- Establishment and use of good maintenance, repair, and 
calibration procedures and facilities. 

 
The application of sensor status signals and intra- and inter-
sensor data quality control are discussed in greater detail below. 
 
4.3 Sensor Status Signals 
 
4.3.1 As noted above, the principal output of a sensor, the signal 
representing an atmospheric measurement, often critically depends 
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upon the proper operation of components other than the principal 
transducer. Power supplies, fans, radiant energy sources, heaters, 
and coolers are common examples. Inclusion of circuitry or other 
devices to monitor their status and the routine examination of the 
status can be a very effective data quality control and 
maintenance tool. Transmission of the sensor status signal data, 
either as an appendage to the routine observational message or as 
a separate clocked or on-request transmission from the automatic 
stations in a network to central facilities opens a door to novel 
approaches to the maintenance of meteorological equipment. In 
addition to that opportunity, the next subsection offers a natural 
and effective way to use this information in automated data 
quality control.  

 
4.4 Intra-sensor Data Quality Control 
 
4.4.1 This paper offers no unique, correct approach to intra-
sensor data editing. The topic is not well understood and 
frequently ignored. However, the author is familiar with two 
measurement systems, both sounding the upper atmosphere, for which 
editing is absolutely essential - without it the resultant 
estimates of wind profiles are worthless. In both of these cases, 
an ever-present background noise alone results in marginal signal-
to-noise ratios and marginally accurate wind averages. The 
frequent interjection of large spurious interference destroys the 
utility of the data unless effective editing techniques are 
applied. 
 
4.4.2 While these cases may be extreme and it is difficult to 
imagine similar problems with signals from many automatic weather 
station sensors, the author suspects that belief in the validity 
of this notion often rests more in wishful thinking than fact. 
Both rotating beam and laser ceilometers operate at marginal 
signal-to-noise ratios over a significant part of their range 
during common meteorological conditions and, consequently, are 
readily victimized by spurious interference. Self-heated lithium 
chloride and cooled mirror dewpoint hygrometers utilize feedback 
loops to establish and maintain sensor temperature to ensure 
equilibrium between sensor and atmospheric water vapor pressures. 
Yet these feedback loops are characterized by parameters which 
depend in complex and poorly understood ways upon temperature, 
pressure, and humidity. Undamped oscillatory behavior, sometimes 
completely out of control, has been observed. Cognizant readers 
may be aware of many other examples of sensors producing 
nonsensical outputs. 
 
4.4.3 Diligent testing and prompt fault correction of 
prototype and production sensors and their associated circuitry 
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can accomplish a great deal and perhaps excuse the absence of 
comprehensive intra-sensor data editing. As a minimum, however, 
the station software should be vigilant, detecting if not 
correcting serious errors. The procedure outlined in the following 
subsection will suffice. 
 
4.4.4 Vigilance 
 
4.4.4.1 One seeks an algorithm which will incorporate knowledge 
of the validity of data, such as would follow from sensor status 
signals, and produce a good estimates of the quality of the 
elements of an observation, especially the averages which comprise 
most of a message. The following will accomplish this.  
 
4.4.4.2 Define the average X of a set of data x1, x2,...,xN as: 

 N N 

(4.1) X = ∑ wnxn/∑ wn 
 n=l n=l 
 
where the weights wn are measures of goodness of the data xn. One 

can also define the estimated uncertainty of the average var(X) 
as: 
 N 

(4.2) var(X) = 1/∑ wn 
 n=l 
 
For the simple case of wn=l/var(x) for all n, 

 N 

(4.3) X = 1/∑ xn/N var(X) = var(x)/N 

 n=l 
 
4.4.4.3 The interesting and useful case occurs by letting 
wn=in/var(x), where in=1 for each acceptable data point and each 

unacceptable point. Refer to in as the "binary worth" of datum xn. 

If there are M unacceptable data points, then (4.1) and (4.2) 
reduce to: 
 
 N 

(4.4) X = ∑ inxn/(N–M) var(X) = var(x)/(N–M) 

 n=l 
 
 N 

 where var(x)= ∑ in[xn–X]2/(N-M-l) 
 n=l 
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Note that var(x) computes using the data without requiring any 
additional information. 
 
4.4.4.4 One can imagine the following sequence of actions 
comprising intra-sensor data quality control: 
 

- initialize in = 1 for all n 

- set n = Ø if either: 
- a sensor status signal indicated failure when xn was 

observed, or 
- x n is otherwise identified as being in error 

- compute the average and the variance of the data var(x) 
- compute the variance of the average, var(X) 
- use the average if its variance is smaller than or equal to a 

predetermined accuracy or reject it if larger 
 
How does one otherwise identify xn as being in error?  

 
4.4.5 Simple Editing 
 
4.4.5.1 Some very simple checks 0n each data sample can detect 
large errors. Range checks establish if the sample falls outside 
established limits or differ excessively from a predicted value. 
Rate-of-change checks compare the sample with the previous valid 
sample or other value to establish if a plausible rate of change 
has occurred or not. 
 
4.4.5.2 Establishing limits for range checks is an easy matter 
if the limits are coarse enough. For example, setting limits at Ø 
and 2ØØ meters per second for wind speed samples seems valid for 
any surface observation, but reducing the upper limit to a 
significantly lower value, say 5Ø meters per second, seems 
questionable. Yet a single sample in error by 5Ø meters per second 
among 9 valid ones results in a 5 meter per second error in the 
wind speed, although if the approach outlined in 4.4.4.4 were in 

use the estimated variance of the average wind speed, (5.27 m/s)2, 

would indicate something is awry. In other words, only the 
grossest errors are detectable. 
 
4.4.5.3 Range checks for a sample differing excessively from a 
predicted value and rate-of-change checks are similar in that both 
presume limits on how quickly an atmospheric variable can change. 
One obvious difficulty is determining actually how quickly an 
atmospheric variable can change. This question can be resolved if 
one knows the response characteristics of the sensor in question, 
since, in reality, one samples the sensor output, not the 
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atmosphere. Other and more subtle problems await the innocent. The 
techniques being discussed depend upon comparison with a valid 
quantity which may be a previous sample or some combination of 
previous samples such as an average. 1f the quantity is based upon 
a previous sample or samples containing undetected errors, it is 
possible to reject all subsequent valid samples. 1f one uses a 
window of acceptance which widens each time a new sample is 
identified as erroneous, then the probability of accepting an 
erroneous sample increases along with the probability of accepting 
a valid one. 
 
4.4.5.4 These simple editing techniques can be effective when 
only large, isolated errors occur. They tend to be sensor specific 
and not amenable to significant refinement or tightening of limits 
or windows of acceptance. A better and more general approach, made 
at the expense of conceptual and computational sophistication, is 
presented in the following subsection. 
 
 
4.4.6 More Elaborate Editing 
 
4.4.6.1 One can show that the procedure outlined in 4.4.4.4 is 
equivalent to least squares fitting a zeroth order polynomial (a 
constant) to the time series. A logical extension of this notion 
is to extend the fitting to higher order polynomials and so refine 
the estimated variance of the average. The remaining discussion of 
this subsection offers a means of accomplishing this task and 
simultaneously extends the capability to identify outliers and 
erroneous data. 
 
4.4.6.2 The algorithm proposed below is predicated upon the fact 
that time series of atmospheric variables exhibit a considerable 
amount of point-to-point consistency, or temporal continuity, if 
sampled at a high enough rate. A rate consistent with the 
considerations of paragraph 2.6 is minimally sufficient. For 
example, a series of temperature measurements taken each second 
for several minutes may show a trend and may exhibit observational 
noise of a few tenths of a degree. But any datum differing from 
its neighbors by several degrees is obviously suspect and should 
be disregarded in computing the average. Figure 4.1 illustrates 
the situation. 
 
4.4.6.3 Figure 4.1 also shows the least squares fitted straight 
line, the average value, and the residual variance of all the data 
and the same information with the 3 outliers removed. Obviously, 
removing the 3 erroneous data points produces much more acceptable 
results. Exactly what are the least squares fitted straight line 
and the residual variance? 
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4.4.6.4 If the data xn have been observed at a sequence of times 

tn, values in (Ø or 1) assigned, and a straight line zn = a0+a1tn 

drawn (n=1,2,...,N), then the residual variance of the data about 
the line is given by: 
 
 N 

(4.5) rvar(x,z) = ∑ in (xn–zn)2 /(N–M-2) 
 n=l 
 

 N 
where N–M = ∑ in 
 n=l 

 
The least squares line is that one defined by the choice of 
coefficients aØ and a1 which minimize the residual variance. A 

variety of well-established procedures exist for finding the 
coefficients. The concepts of residual variance and least squares 
fitted curves are readily extended to higher order polynomials. 
 
4.4.6.5 One can easily understand the means of identifying and 
assigning a binary worth Ø to those points for which sensor status 
signals indicate failure. The means for identifying and assigning 
binary worth Ø to outliers is not so obvious. The following 
algorithm will accomplish the desired result. 
 
(1)  Compute the initial values of the least squares coefficients 

and residual variance for the set of points xn, in and tn. 

in= 1 unless set to Ø by a sensor status signal. Set n=1. 

(2) If in = Ø, skip directly to step (6). 

(3) Compute the residual of xn, its departure from the fitted 

line, rn = xn–zn. 

(4) If rn2/rvar(x,z) is less than or equal to a predetermined 

threshold, then skip directly to (6). 
(5) Set in = Ø and recompute the coefficients and residual 

variance as if xn never existed.
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(6) Increment n. If n=N+1, then n=1. Go to step (2).  
 
The sequence of steps (1) through (6) continues until (5) is not 
executed in a complete pass through the data from n=l to n=N; in 
other words, until no more outliers are identified. The only 
parameter chosen by the user is "a predetermined threshold" in 
step (4). This threshold is a dimensionless quantity, the number 
of residual variances a datum may depart from the current least 
squares curve without being considered an outlier. 1f the 
underlying distribution of residuals is Gaussian, setting the 
threshold to 1 would initially tend to identify 31.8 percent of 
the data points as outliers; to 4, about 4.6 percent; and to 9, 
Ø.27 percent. However, these percentages would not be attained 
because of the increase in residual variance occurring as the 
denominator (N–X–Nc) decreases as in (4.5), the number of 

coefficients Nc. in that equation being 2. The data in Figure 4.1 

were edited using this six step algorithm with in=1 for all n and 

the threshold set to 4 on input. 
 
4.4.6.6 This procedure has accomplished the following: 
 

- Outliers have been identified using a simple test which is 
not specific to any atmospheric variable.  

- By shifting the origin of the times tn so the series is time-

centered on Ø, aØ is the average value of the data excluding 

the outliers. rvar(x,z)/(N-M) is a statistically sound 
estimate of its uncertainty.  

- a1 is a statistically sound estimate of trend in the data. 

Its uncertainty may also be estimated.  
- If it is necessary to replace the outliers with plausible 

values, the least squares fitted line readily provides them.  
 
4.4.6.7 The procedure can be generalized in several respects: 
 

- Least squares fit higher order polynomials or other 
functions.  

- If one has other knowledge of the quality of a sample, such 
as obtains from signal-to-noise measurements, use this 
information to weight samples more realistically than "binary 
worth" discussed in 4.4.4.3.  

- Code computationally efficient and stable matrix inversion 
algorithms.  

In any case, the user has two choices to make - selecting a model 
for the data and the accept/reject threshold. 
 
4.4.6.8 Choosing the order of the polynomial is equivalent to 
choosing a model which accurately fits the error and noise-free 
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data. In general, one doesn't know the correct model, 50 one faces 
the consequences of a modelling error. Modelling error appears as 
an increase in residual variance. 1f the increase is small 
compared to the contribution of noice and other error sources in 
the data or small compared to the desired accuracy, then an 
adequate model has been selected. The following considerations 
help govern the choice of the model.  
 

- Very long time series of atmospheric data are difficult to 
fit with polynomials of reasonable order. Break long series 
into shorter segments.  

- Any Nc points can be exactly and meaninglessly fitted by a 

polynomial with N coefficients. 1f N is the number of points 
to fitted, choose Nc < N/3.  

 
4.4.6.9 Selecting the number of residual variances as 
accept/reject threshold involves the following considerations: 
 

- Too large a threshold will result in no discrimination 
against outliers.  

- Too small a threshold will result in the excessive rejection 
of valid data.  

- Let Nr be the number of residual variances chosen as the 

accept/reject criterion, N the number of data points to be 
fitted, and Nc. the number of coefficients in the polynomial. 

For any rejection to occur, Nr<(N–Nc). 4<=Nr<=(N–Nc)/2 seems 

to be a workable range.  
 
4.4.6.1Ø The reader should also be aware that this approach to 
editing data suffers from a potentially serious flaw. The 
identification of erroneous samples depends upon the departure of 
samples from a curve fitted to erroneous data. In practice, most 
of the difficulty is avoided by requiring that the independent 
variable (usually time) be error-free and reasonably well 
distributed across the total range it spans. Equispaced sampling 
satisfies this requirement. An alternative approach to editing has 
been proposed by Fischler and Bolles (1981) to avoid this flaw. It 
appears to deal very effectively with data badly contaminated by 
large errors, but at the usual cost of increased computational 
complexity. 
 
4.5 Inter-sensor Data Quality Control 
 
4.5.1 Inter-sensor data quality control spans two scales - one 
within the confines of a single automatic weather station and a 
second spanning a network of stations. In either case, quality 
controls should be based upon established physical and 
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meteorological principles. 
 
4.5.2 In the interest of economy, an automatic weather station 
usually does not include redundant sensors and it tends, by 
design, to measure independent atmospheric variables. Thus, the 
list of inter-sensor controls within a station would likely be 
small. Some examples are: 
 

- Dewpoint temperature cannot exceed ambient temperature.  
- Precipitation without clouds overhead or just having passed 

overhead is very unlikely.  
- Nonzero wind speed and zero wind direction variance strongly 

suggests a wind direction sensor problem. Conversely, zero 
average wind speed and nonzero wind direction variance 
suggests a defective wind speed sensor.  

 
4.5.3 At the network level, some very powerful tests are 
available. Meteorological fields have considerable spacial 
continuity on the synoptic scale. These fields can be analyzed at 
a central facility to uncover anomalous observations and trigger 
investigative or remedial action. Because of the low level of 
turbulent fluctuations in pressure and the confidence with which 
local geographic influences can be removed by normalizing all 
observations to a common reference level, this atmospheric 
variable is a prime candidate for this type of data quality 
control. By time averaging over many observations, other variables 
should be susceptible to this analysis as well. However, local 
orographic effects must be carefully considered and taken into 
account. 
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5.Ø AVERAGES AND OTHER STATISTICS 
 
5.1 An examination of WMO SYNOP and SHIP codes reveals that the 
following meteorological statistics are needed: 
 

- Averages, or quantities derived from averages, of time series 
of visibility, wind direction, wind speed, temperature, 
dewpoint temperature, sea level pressure, pressure change, 
precipitation, and maximum and minimum temperatures.  

- Statistics requiring much more sophisticated processing 
include cloud height, cloud cover, wind wave period and 
height, and swell direction and period and height.  

 
Other elements of the synoptic observation are beyond the 
capability of automatic observation at this time. These are State 
of the sky, cloud layer direction of motion, state of the ground, 
ice or snow depth, cloud type, and special phenomena. 
 
5.2 Averages 
 
5.2.1 An earlier section established the need to linearize before 
averaging. Note that any linear transformation may precede or 
follow averaging without consequence. In other words, if y is a 
linear function of x: 
 
(5.1) y=aØ+a1x, where aØ and a1 are constants, 

 
then the averages of y and of x, Y and X respectively, are related 
by: 
 
(5.2) Y=aØ+a1X. 

 
5.2.2 Averaging using analog circuitry 
 
5.2.2.1 Define the arithmetic average of a time dependent variable 
x(t'), X(t,T), as: 
  t 
(5.3) X(t,T)=(l/T) ∫ x(t')dt' 
  t-T 
 
Define the exponential average of x(t'), XE(t,TC), as: 

  t  t 
(5.4) XE(t,TC) =  ∫ x(t')exp(t'/Tc)dt'/ ∫ exp(t'/Tc)dt' 
  -∞ -∞ 
In (5.4), Tc is referred to as the time constant. 

 
5.2.2.2 Why define two averages? Simply because the arithmetic 
average conforms to the normal meaning of average and is readily 
implemented digitally, while the exponential average is the 
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simplest low-pass filter, represents the simplest response of a 
sensor to atmospheric fluctuations, and is much more convenient to 
implement in analog circuitry than the arithmetic average. Figure 
5.1 shows the implementations of both averages. Acheson (1968) 
demonstrated that when Tc equals approximately Ø.5T in the range 

of 1<=T<=1Ø minutes, arithmetic and exponential averages of wind 
speed are essentially indistinguishable. The physical basis for 
this observation and subsequent experience suggests that the two 
averages are also indistinguishable for atmospheric pressure, 
temperature, humidity, extinction coefficient, and wind direction 
as well. 
 
5.2.3 Averaging using digital logic 
 
5.2.3.1 Given a time series of discretely sampled data xj, xj+1, 

xj+2,... sampled at times tj, tj+1, tj+2,...; then the arithmetic 

average of x is X(tk,T):  

 k 
(5.5) X(tk,T)=(l/N) ∑ xj, where T=tk-tk–N+1. 

 j=k–N+1 
 
Analog and digital arithmetic averages are identical if equispaced 
sampling is used (tj+1–tj=constant for all j) and the sampling 

rate exceeds the cutoff frequency of the data (tj+1–tj < 1/fc). As 

noted earlier, satisfying these conditions also guarantees that 
the average will have minimum uncertainty. 
 
5.2.3.2 While not often used, the exponential average can also 
be expressed digitally for equispaced sampled data. 
 
(5.6) XE(tk,r)=(1-r)xk+rXE(tk-1,r) 

 
  where r=Tc/(Tc+tk-tk-1). 

 
5.2.4 Mixed analog and digital averaging 
 
5.2.4.1 For very fast response sensors, transducer outputs vary 
rapidly and the information bandwidths are large, necessitating 
high sampling rates for optimal (minimal uncertainty) averaging. 
To reduce the sampling rate and still provide the optimal digital 
average, linearize the transducer output (if required) 
exponentially average it using analog circuitry with time constant 
Tc then sample at intervals T Also note that it desirable, and 

sometimes necessary, to low-pass filter analog-to digital 
converter inputs to minimize the effects of noise and line pickup. 
This is most simply done with an analog circuit forming an 
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exponential average. The cutoff frequency at its output is 
approximately 1/2Tc. 

 
5.3 Cloud Height and Cloud Cover 
 
5.3.1 To obtain statistically sound height and coverage 
estimates of cloud layers, a considerable number of measurements 
are required. Since ceilometers take an appreciable amount of 
time, typically 1Ø to 3Ø seconds, to make a single determination 
of cloud height, about 3Ø minutes are needed to acquire 5Ø to 1ØØ 
measurements. During an interval of this length, the detection of 
clouds in a higher layer is almost certain if a lower broken or 
scattered layer exists and the higher layer is within range of the 
ceilometer. Under these conditions, the resultant time series of 
cloud heights characterizes two or more layers. A simple average 
of all heights is clearly incorrect. A procedure for grouping 
heights prior to averaging heights within each group must be used. 
This grouping will also allow the estimation of cloud cover by 
layer by considering the ratios of the numbers of observations of 
clouds in each group to the total number of possible observations. 
 
5.3.2 If one regards each cloud layer as a probability 
distribution with unknown mean and variance, both changing with 
time in the general case, then measurements of cloud base height 
are samples drawn from an unknown number of distributions with 
unknown parameters. Grouping cloud base heights equates to 
estimating the number of distributions and their means and 
variances. In general, this is a formidable problem. The subject 
of "cluster analysis" within the broader topic of "pattern 
recognition" probably offers the most well-documented source of 
possible solutions to this problem. 
 
5.3.3 Duda et. al. (1971) studied the cloud base height 
estimation problem. One of their suggested approaches, 
hierarchical clustering, has formed the basis for a number of 
algorithms in limited use within the USA. These algorithms 
simplify the problem by assuming that:
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- 6Ø ceilometer measurements taken at 3Ø second intervals over 
a 3Ø minute period constitute a minimally acceptable sample,  

- the mean cloud base heights of every layer are constant 
during the observing period,  

- no more than 5 cloud layers exist within range of the 
ceilometer,  

- and any group or cluster containing 5 or fewer observations 
does not describe a layer of clouds.  

 
The following paragraphs describe the basis for the algorithm in 
plain language without detail and much more precisely in a pseudo-
computer language. The input to the algorithm is a set of measured 
cloud heights hj, j=l,2,...N. 

 
5.3.4 In plain language: 
 

Initially, each cluster contains one cloud height. (1> Find the 
distances between clusters.  
(2) Merge the pair of clusters separated by the minimum 

distance to create a new cluster and delete the merged 
pair.  

(3) Continue this process until only 5 clusters remain. 
(4) Merge clusters which are very close together.  
(5) Disregard any remaining clusters which contain 5 or fewer 

observations.  
 

5.3.5 In pseudo-language (let Hj represent the average cloud base 

height and nj the number of observations in the jth cluster and 

all heights are in feet): 
 
Initialize: SORT the observations so h1<=h2<=...<=hN 

FOR j=l to N 
 Hj=hj 

 nj=1 

 NEXT j 
j1=1 

 

(1) Dmin2 = largest positive number available 

FOR j = j1 to N–1 

 D2 = nj nj+1(Hj+1–Hj) 2/( nj+ nj+1) 

 IF D2 < Dmin2 then Dmin2 = D2 and k=j 

 NEXT j 
 
(2) Hk = (nkHk+ nk+1Hk+1)/( nk+ nk+1) 

nk = nk+ nk+1 
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Hk+l = Ø 

nk+1.= Ø 

 
(3) SORT the clusters so H1<=H2<=...<=HN 

j1 = j1 + 

IF N–j1>4 then go to (1)  

 
(4) nm = Ø 

FOR j=j1 to N–1 

 IF Hj <1ØØØ and Hj+1–Hj<=25Ø 

   or lØØØ<= Hj <3ØØØ and Hj+1–Hj<=35Ø 

   or 3ØØØ<= Hj <5ØØØ and Hj+1–Hj<=45Ø 

   or Hj>=5ØØØ and Hj+1–Hj=6ØØ 
  then  Hj=(njHj+nj+1Hj+1)/(nj+nj+1) 

   nj=nj+nj+1 

   Hj+1=Ø 

   nj+1=Ø 

   nm= nm+1 

  NEXT j 
 IF nm=Ø then go to (5)  

 j1=j1+nm 

SORT the clusters so H1<=H2<=...<=HN 

GO TO (4) 
 
(5) nd=Ø 

 FOR j=j1 to N 

  IF nj<=5 then Hj=Ø 

  NEXT j 
 SORT the clusters so H1<=H2<=...<= HN 

 j1=j1+ nd 

 
At the conclusion of these steps, there are N-j1+1 significant 

clusters, each describing one cloud layer. 
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6.Ø DERIVING RELATED VARIABLES AND THE ART OF APPROXIMATION 
 
6.1 In preparing observations for coding and transmission, the 
observer consults conversion and other reference tables. It is 
often possible to incorporate tables directly into an automatic 
weather station and provide interpolation routines. Doing this 
exacts a penalty in the form of storage requirements and ensuring 
the accuracy of the tabular data and the interpolation routine. 
Sometimes simple formulae constitute the basis for the table. If 
this is recognized they may be used directly in station software. 
In other cases, formulae are not known, are too complex or time 
consuming in execution, or require the use of functions not 
available in the system in use. In any of the latter cases, one 
appeals to the art of approximation.  
 
6.2 Finding appropriate formulae or good approximations does not 
require extraordinary mathematical skills - a knowledge of a few 
general references and a willingness to search literature almost 
always suffices. Two widely available references stand out - The 
Smithsonian Meteorological Tables for meteorological formulae and 
the Handbook of Mathematical Functions for approximations.  
 
6.3 In the following subsections, some formulae and approximations 
for humidity, reduction of station to sea-level pressure, 
altimeter setting, and visibility are presented and discussed.  
 
6.4 Humidity 
 
6.4.1 In converting values of dewpoint temperature to or from any 
other measure of humidity, an expression relating temperature and 
saturation water vapor pressure is needed. No exact formula 
exists. The best equations are based upon integration of the 
Clausius-Clapeyron equation, a fundamental thermodynamic 
relationship. These results include the Goff-Gratch formulation, 
adopted by the IMO in 1947, and more recent work conducted at the 
National Bureau of Standards in the USA by Wexler and Greenspan 
(1971). The latter proposed equations of the form:  
 
 n 

(6.1) ln(ew)= ∑ EjT
j-1

+ B ln(T) 

 j=Ø 
 
where  ew=saturation water vapor pressure 

 T=absolute temperature 
 Ej,B=constants 

 
For n=3, 4, or 5, this equation yields excellent results over the 
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temperature range of Ø to 1ØØ oC and good agreement, within Ø.Ø4 
Pascal or Ø.ØØØ4 millibars, with the Goff-Gratch formulation 

between Ø and –4Ø oC. For the case n=3 (ew in Pascals and T in 

deqrees Kelvin): 
 

EØ = -6.77772Ø3x1Ø3 

E1 = 5.44Ø9359xlØ1 

E2 = -8.Ø4Ø4l43xlØ-3 

E3 = 7.15445Ø3xlØ-6 

B = -3.8358214 
 

6.4.2 Lowe (1977) gives an empirical polynomial expression which 
is simpler than (6.1): 
 
(6.2) ew=aØ+t(a1+t(a2+t(a3+t(a4+t(a5+a6t))))) 

 
aØ = 6.1Ø7799961 

a1 = 4.43651825lx1Ø-1 

a2 = 1.4289458Ø5x1Ø-2 

a3 = 2.65Ø648471xlØ-4 

a4 = 3.Ø3124Ø396xlØ-6 

a5 = 2.Ø34Ø8Ø948X1Ø-8 

a6 = 6.13682Ø929xlØ-11 

 
ew is in millibars when t is in degrees Celcius 

 
The agreement of (6.2) with the Goff-Gratch formulation is also 

excellent, within Ø.1 Pascal or Ø. ØØ1 millibar from -4Ø to +5ØoC. 
 
6.4.3 Equations (6.1) and (6.2) are designed to compute vapor 
pressure given temperature. Either can be easily used to find 
temperature given vapor pressure by applying Newton's method of 
successive approximation. Using (6.1) as an example:  
 
 
(6.3) Tk= Tk-1-f(Tk-1)/(df/dT)k-1 

 
where k indexes the trial, k=1,2,3,...  

TØ is an arbitrary initial guess temperature 

 
 n 
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 f(T)= ∑ EjT
j-1+ B ln(T)-ln(ew) 

 j=Ø 
 n 

 (df/dT)k-1= ∑ (j-1)Ej(Tk-1)
j-1+ B/T 

 j=Ø 
Iteration continues until Tk-Tk-1 is acceptably small. As an 

example, for ew=l2338.49 Pa and TØ=273.l5 K (Ø oC). 

 k Tk-273.l5 Tk-Tk-1 

 1 41.364 41.364 
 2 49.738 8.373 
 3 5Ø.ØØØ Ø.262 
 4 5Ø.ØØØ Ø.ØØØ2 
 
6.5 Sea level Pressure 
 
6.5.1  The Manual of Barometry (1963) gives the following equation 
for the reduction of station pressure p to sea level pressure pØ: 

 
(6.4) pØ=p exp(HK ln(1Ø)/Tmv) 

 
where H=station elevation (geopotential meters) 

 K ln(1Ø)=6.l454xlØ-2(oR/gpm) 
 Tmv=mean virtual temperature of the column of air 

between the station and sea level (oR) 
 

Since the column of air in the definition of Tmv is an imaginary 

one for land stations, it needs definition: 
 
(6.5) Tmv=459.7+tS+aH/2+Ch(H)es+F(H,tS) 

where tS= average station temperature (oF), formed as 

the mean of current temperature and that 
observed 12 hours earlier 

 a = Ø.Ø1l7 (oF/gpm)  
 Ch(H)= humidity correction factor, a function of 

station elevation alone (oF/mb) 
 es= current observed water vapor pressure (mb)  

 F(H,tS)= correction for plateau effect and local lapse 

rate anomalies (oF)  
 

Tables 7.4.1 through 7.4.8 in the reference give values of the 
correction factor F(H,tS) for a large number of North American 

stations. For any station below 3Ø5 gpm (1ØØØ feet) in altitude, 
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the correction is condensed into a single table (7.4.1) as a 
function of the mean temperature tS defined above and the annual 

normal station temperature tSn. 

 
6.5.2 As an alternative to storing this empirical table and 
interpolating as needed, the data has been least-squares fitted 
with the result: 
 
(6.6) F(H,tS) = F (tSn ,tS) 

=(-1.Ø+Ø.438tSn) 

 +(-Ø.4Ø3 + 1.25x1Ø-6tSn)tS2. 

 
Equation (6.6) fits the tabulated data with a root-mean-square 

error of Ø.l3 oF and a maximum error of Ø.44oF. 
 
6.6 Altimeter Setting 
 
6.6.1 The Smithsonian Meteorological Tables (1963) define 
altimeter setting A as: 

 

(6.7) A=(p-Ø.Ø1)(1+pØn a/TØ)(H/(p-Ø.Ø1)n)1/n 

 
where p= station pressure (inches mercury or inHg) 
 pØ= 29.92l (inHg) 

 a= Ø.ØØ65(K/m)  
 TØ= 288 (K) 

 n= Ø.19Ø284 
 

While (6.7) can be evaluated directly with a floating point 
processor capable of executing the needed operations, the 
following approximation has proven useful in applications where 
very limited processing capabilities were available. 
 
6.6.2 Let A'=A+Ø.Ø1. Then (6.7) is approximated to within Ø.ØØ5 
inHg for station elevations up to 3ØØØ meters by:  

 

(6.8) A'=p[l+(aH/TØ) (pØ/p)n]1/n. 

 
Expanding A' in a Taylor series about the station elevation H and 
standard atmosphere pressure at H, pH: 

 
(6.9) A'(p) = A'(pH)+(dA'/dp)H,pH(p-pH)+R2 

= pØ+ (pØ/pH)1-n(p-pH)+R2 

where R2=(d2A'/dp2)H,p'(p-pH)2/2 
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 abs (p'-pH)<=abs(p-pH) 

The remainder R2 is maximized when p' is minimized. The following 

table gives values of R2 for pressures corresponding to 26 inHg at 

sea level. 
 H (m) H (inHg) p(=p')  (inHg) R2 (inHg) 

 Ø 29.92 26.ØØ Ø Ø 

 1ØØØ 26.54 23.Ø6 -4.1x1Ø-3 

 2ØØØ 23.47 2Ø.4Ø -8.Øx1Ø-3 

 3ØØØ 2Ø.7Ø 17.99 -11.8x1Ø-3 
 
Thus, for station elevations up to 3ØØØ meters, altimeter setting 
may be approximated to within Ø.Ø2 inHg with: 
 

(6.1Ø) A=29.911+(29.921/pH)Ø.8Ø9716(p-pH) 

 

The coefficient (29.921/pH)Ø.8Ø9716 is a constant for all stations 

of the same height and may be readily precomputed. 
 
6.7 Visibility 
 
6.7.1  As noted in the earlier section on linearization, 
visibility is neither linear nor instrumentally measurable. The 
linear measurable atmospheric property is extinction coefficient. 
To convert average extinction coefficient to average visibility, 
the following two equations are required: 

(6.11) by day: V=-ln(Ct)/CE  

(6.12) by night: Et=I exp(-CEV)/V2 

 
 where  V=average visibility (miie) 1 

  CE=average extinction coefficient (mile-1) 

  Ct=standard threshold of contrast (Ø.Ø55) 

  Et=standard threshold of illuminance (Ø.Ø84/V mi-cd) 

   I=standard source intensity (25 candela) 
 
Equations (6.11) and (6.12) and the definitions of the variables 
are standard and widely accepted, but the units and values given 
above are not universal. While (6.11) serves the need as written, 
(6.12) cannot be explicitely solved for visibility. Newton's 
method of successive approximations provides the solution. Using 
the same notation as in equation (6.3): 
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(6.13) Vk=Vk-1-f(Vk-1)/(df/dV)k-1 

 where f(V) =Ø.Ø84V-25exp(-CEV) 

 df/dV=Ø.Ø84+25CEexp(CEV) 

For VØ=1 and CE=79.98 mile-1, Newton's method produces the 

following resuits: 
 k Vk Vk-Vk-1 

 1 Ø.ØØØØ -1.ØØØØ 
 2 Ø.Ø125  Ø.Ø125 
 3 Ø.Ø25Ø  Ø.Ø125 
 4 Ø.Ø375  Ø.Ø125 
 5 Ø.Ø5ØØ  Ø.Ø125 
 6 Ø.Ø623  Ø.Øl24 
 7 Ø.Ø744  Ø.Ø124 
 8 Ø.Ø855  Ø.Ø111 
 9 Ø.Ø943  Ø.ØØ88 
 10 Ø.Ø99Ø  Ø.ØØ47 
 11 Ø.1ØØØ  Ø.ØØ1Ø 
 12 Ø.1ØØØ  Ø.ØØØØ4 
 
Care was taken in (6.13) to choose the form of f(V) to avoid 
difficulties with intermediate values of V<=Ø. 
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